Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
2.
Gen Comp Endocrinol ; 330: 114144, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270338

RESUMO

In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope clusters have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these satellite clusters are not known. We recently discovered two distinct prolactin-expressing cell types in Japanese medaka (Oryzias latipes), a euryhaline species, using single cell transcriptomics. In the present study, we characterize these two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent spatially distinct cell clusters, as found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell-like folliculo-stellate cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell clusters, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal's sex. Surprisingly, our data do not show a correspondence between the stem cell-like lactotropes and these satellite lactotrope clusters. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in both spatially distinct lactotrope clusters decreases when environmental salinity increases, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell clusters, suggesting that these lactotropes are regulated differently.


Assuntos
Oryzias , Adeno-Hipófise , Animais , Prolactina/metabolismo , Oryzias/genética , Oryzias/metabolismo , Adeno-Hipófise/metabolismo , Hipófise/metabolismo , Hibridização In Situ
3.
Front Neuroendocrinol ; 67: 101018, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870647

RESUMO

The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.


Assuntos
Peixes , Mamíferos , Animais , Peixes/genética , Peixes/metabolismo , Hipófise/metabolismo , Hormônios/metabolismo
4.
Gen Comp Endocrinol ; 225: 185-196, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26255685

RESUMO

Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17ß-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.


Assuntos
Anguilla/metabolismo , Ovário/metabolismo , Maturidade Sexual/fisiologia , Transcriptoma , Anguilla/sangue , Anguilla/genética , Animais , Biomarcadores/metabolismo , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipófise/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
5.
Plant J ; 84(5): 914-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26461850

RESUMO

During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/fisiologia , Regulação da Expressão Gênica de Plantas , Fatores de Virulência/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Protoplastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transformação Genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Genome Announc ; 2(2)2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24675863

RESUMO

We have sequenced the complete genome of the plant pathogen Agrobacterium tumefaciens strain LBA4213, a derivative of the wild-type strain A. tumefaciens Ach5 and the ancestor of A. tumefaciens strain LBA4404 used in genetic engineering. The genome consists of a circular chromosome and a linear chromosome, as well as a megaplasmid and a tumor-inducing plasmid.

7.
PLoS One ; 7(5): e37880, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693581

RESUMO

Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules.


Assuntos
Melanoma/genética , Oryzias/genética , Transcriptoma , Animais , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA